Showing posts with label Hazaribagh. Show all posts
Showing posts with label Hazaribagh. Show all posts

Monday, May 2, 2011

Megaliths site in Jharkhand State of India.

Jharkhand state is very rich in ancient and historical sites.
by
Dr. Nitish Priyadarshi






The above photographs are from Chatra district. Photos were send by Mr. Ujjal Ghosh.

Different Megaliths site has been identified by different workers in Jharkhand State of India. The sites are mainly concentrated in Hazaribagh, Lohardagga, Singhbhum, Chatra districts etc. Jharkhand state is very rich in ancient and historical sites which need urgent care and importance. Most of the sites in state are still unexplored and needs more research to disclose its mysteries.

Megaliths are the most unfortunate relics of our country's prehistory. Although they are found in almost the entire expanse of the country, still they are not regarded as a source of our prehistory perhaps owing to their tribal origin. But as they are found in almost the entire sacred land of India, these ancient monuments are therefore our truest archaeological heritage.

Megaliths are large stone structures or groups of standing stones which are located at sites in various parts of the would and believed to have religious significance. The term "megalith" means "great stone" which is derived from the Greek words "megas" ('great') and "lithos" ('stone'). However, the general meaning of megaliths includes any structure composed of large stones which includes tombs and circular standing structures. Such structures have been found in Europe, Asia, Africa, Australia, and North and South America.

Their origins and purposes have tantalized experts and ordinary people for centuries. There is a general consensus that many were built in the Neolithic and early Bronze Ages.

Those found in India date from the first centuries of the Christian era. The megaliths on Easter Island, in the South Pacific, probably are contemporary with the Medieval period of Europe.

The general speculation as to their purposes is that megaliths were used for religious activities, burial sites, and astronomical observatories for the sun and other celestial bodies. Some megaliths are said to possess supernatural or electromagnetic forces.

Megalithic burials are found in Northeast and Southeast Asia. They are found mainly in the Korean Peninsula. They are also found in the Liaoning, Shandong, and Zhejiang in China, Kyūshū in Japan,Dong Nai province in Vietnam and parts of India. Some living megalithic traditions is found on the island of Sumba and Nias in Indonesia. The greatest concentration of megalithic burials is in Korea. Archaeologists estimate that there are 15,000 to 100,000 southern megaliths in the Korean Peninsula.

Megaliths were used for a variety of purposes. The purpose of megaliths ranged from serving as boundary markers of territory, to a reminder of past events, to being part of the society's religion.

Amongst the indigenous peoples of India, Malaysia, Polynesia, North Africa, North America, and South America, the worship of these stones, or the use of these stones to symbolize a spirit or deity, is a possibility.

Sunday, June 1, 2008

ARSENIC IN THE WATERS OF JHARKHAND STATE OF INDIA.

ARSENIC IN THE WATERS OF JHARKHAND STATE OF INDIA.
By
Dr. Nitish Priyadarshi




Fig: 16 years old girl suffering from arsenic toxicity. This girl belongs to Sahebgunj district of Jharkhand. She is not able to walk properly due to pain in her feet. Her parents are worried about her marriage.



Fig: Man showing arsenic affected areas of his body.

Fig: Aersenic filter installed by the local administration in arsenic affected areas of Sahebgunj district of Jharkhand. (all photos by Kumar Karamvir)


  • INTRODUCTION AND DISCUSSION:
    Arsenic contamination of groundwater has led to a massive epidemic of arsenic poisoning in Bangladesh and West Bengal in India and neighbouring countries. It is estimated that approximately 57 million people are drinking groundwater with arsenic concentrations elevated above the World Health Organization's standard of 10 parts per billion. The arsenic in the groundwater is of natural origin, and is released from the sediment into the groundwater due to the anoxic conditions of the subsurface. This groundwater began to be used after western NGOs instigated a massive tube well drinking-water program in the late twentieth century. This program was designed to prevent drinking of bacterially contaminated surface waters, but failed to test for arsenic in the groundwater. Many other countries and districts in South East Asia, such as Vietnam, Cambodia, and Tibet, China, are thought to have geological environments similarly conducive to generation of high-arsenic groundwaters. Arsenicosis was reported in Nakhon Si Thammarat, Thailand in 1987, and the dissolved arsenic in the Chao Phraya River is suspected of containing high levels of naturally occurring arsenic, but has not been a public health problem due to the use of bottled water.
    An environmental health disaster is unfolding in West Bengal and Bangladesh. Tens of millions of persons in many districts are drinking ground water with arsenic concentrations far above acceptable levels. Thousands of people have already been diagnosed with poisoning symptoms, even though much of the at-risk population has not yet been assessed for arsenic-related health problems. Alarming level of arsenic in the groundwater of eight districts of West Bengal and 2 districts of Jharkhand in East India has become a serious health hazard. The number of people suffering from skin lesions, muscular disorder and even cancer, is constantly going up. This is an acute 'environmental health' problem since the rural population in these districts is solely dependent on groundwater for drinking, bathing and cooking.
    The source of the problem is geological in origin, which has aggravated due to excessive withdrawal of groundwater for paddy cultivation in the wake of the green revolution of the 1970s.
    ARSENIC IN JHARKHAND
    A detailed study has been presented on groundwater metal contents of Sahebgunj district in the state of Jharkhand, India with special reference to arsenic. Both tubewell and well waters have been studied separately with greater emphasis on tubewell waters. Groundwaters of all the nine blocks of Sahebgunj district have been surveyed for iron, manganese, calcium, magnesium, copper and zinc in addition to arsenic. Groundwaters of three blocks of Sahebgunj, namely, Sahebgunj, Rajmahal and Udhawa have been found to be alarmingly contaminated with arsenic present at or above 10 ppb.
    Rivers flowing through the coal fields of Jharkhand have been reported to carry arsenic responsible for arsenic poisoning in downstream areas of West Bengal. The coal fields of Bachara and Piprawar areas of Jharkhand have contaminated the waters of the Damodar and its tributary, the Safi, causing problems in West Bengal. According to Nitish Priyadarshi, arsenic contamination arises mainly due to the dumping of waste from the coal mines along the river bed. Coals of the area mentioned contains sufficient amount of arsenic as described below.
    Distribution of Arsenic in the water and in the Permian coals of North Karanpura Coalfield of Jharkhand State of India:
    The North Karanpura coalfield, a western most member in the east-west chain of the Damodar Valley Basin, forms a large expanse of coal bearing sediments spread over Hazaribag, Ranchi and Palamau districts of Jharkhand State. It covers a total area of around 1230sq. Km. For the arsenic study, samples from coal from Badam, Kerendari, KDH, Rohini, Dakra and Karkatta were analysed by the author. Molybdenum-blue Colorimetry was used as the chemical technique for arsenic determination as recommended by the International Standard Organisation. Concentration of arsenic in coal samples range from 0.01 to 0.49ppm with an arithmetic mean of 0.15ppm. (Priyadarshi, 2004). Concentration of arsenic is low compared to most world coals. Average ash% is very high (up to 32.51%).
    To understand the environmental impact of arsenic in coals of research area, water and sediments were analysed for arsenic concentration. Concentration were moderately high (2 ppm) in the sediments of local streams flowing through the coal mining area. Average concentration of arsenic in the sediments of mine water was 1.4 ppm. Though the concentration of arsenic is low in the surface water ( 0.001-0.002 ppm) it may still affect the local habitants especially during summer season when the consumption of water increases many folds. People of this area is consuming water from several years. Effects of arsenic will be there if the people of the area consume water containing arsenic for longer periods.

    Real truth is that people of the area are ignorant about this toxicity. Few people know about this but due to lack of pure source of water they are helpless and are forced to depend on the contaminated water.
    Local communities of the Sahebgunj district in the state of Jharkhand, are already showing sign of arsenic toxicity. Sufferers are complaining about body ache, skin problems, nausea etc.


    General Source of arsenic
    Arsenic is widely distributed throughout the earth's crust.
    Arsenic is introduced into water through the dissolution of minerals and ores, and concentrations in groundwater in some areas are elevated as a result of erosion from local rocks.
    Industrial effluents also contribute arsenic to water in some areas.
    Arsenic is also used commercially e.g. in alloying agents and wood preservatives.
    Combustion of fossil fuels is a source of arsenic in the environment through disperse atmospheric deposition.
    Inorganic arsenic can occur in the environment in several forms but in natural waters, and thus in drinking-water, it is mostly found as trivalent arsenite (As(III)) or pentavalent arsenate (As (V)). Organic arsenic species, abundant in seafood, are very much less harmful to health, and are readily eliminated by the body.
    Drinking-water poses the greatest threat to public health from arsenic. Exposure at work and mining and industrial emissions may also be significant locally.
    Effects:
    Chronic arsenic poisoning, as occurs after long-term exposure through drinking- water is very different to acute poisoning. Immediate symptoms on an acute poisoning typically include vomiting, oesophageal and abdominal pain, and bloody "rice water" diarrhoea. Chelation therapy may be effective in acute poisoning but should not be used against long-term poisoning.
    The symptoms and signs that arsenic causes, appear to differ between individuals, population groups and geographic areas. Thus, there is no universal definition of the disease caused by arsenic. This complicates the assessment of the burden on health of arsenic. Similarly, there is no method to identify those cases of internal cancer that were caused by arsenic from cancers induced by other factors.
    Long-term exposure to arsenic via drinking-water causes cancer of the skin, lungs, urinary bladder, and kidney, as well as other skin changes such as pigmentation changes and thickening (hyperkeratosis).
    Increased risks of lung and bladder cancer and of arsenic-associated skin lesions have been observed at drinking-water arsenic concentrations of less than 0.05 mg/L.
    Absorption of arsenic through the skin is minimal and thus hand-washing, bathing, laundry, etc. with water containing arsenic do not pose human health risk.
    Following long-term exposure, the first changes are usually observed in the skin: pigmentation changes, and then hyperkeratosis. Cancer is a late phenomenon, and usually takes more than 10 years to develop.
    The relationship between arsenic exposure and other health effects is not clear-cut. For example, some studies have reported hypertensive and cardiovascular disease, diabetes and reproductive effects.
    Exposure to arsenic via drinking-water has been shown to cause a severe disease of blood vessels leading to gangrene in China (Province of Taiwan), known as 'black foot disease'. This disease has not been observed in other parts of the world, and it is possible that malnutrition contributes to its development. However, studies in several countries have demonstrated that arsenic causes other, less severe forms of peripheral vascular disease.
    According to some estimates, arsenic in drinking-water will cause 200,000 -- 270,000 deaths from cancer in Bangladesh alone.
    Reference:
    Priyadarshi, N.: Arsenic in Damodar poisoning West Bengal. Indian Express, July 12, 1998.
    Priyadarshi, N. 2004. Distribution of arsenic in Permian Coals of North Karanpura coalfield, Jharkhand. Jour. Geol. Soc. India, 63, 533-536.

    http://www.who.int/mediacentre/factsheets/fs210/en/

    http://www.geog.cam.ac.uk/research/projects/arsenic/symposium/session4.html

    http://www.cababstractsplus.org/google/abstract.asp?AcNo=20053111461

    http://nutritionfoundationofindia.res.in/archives.asp?archiveid=72&back=bydate.asp.


    Dr. Nitish Priyadarshi
    Geologist and Lecturer
    Department of Environment and Water Management,
    J.N. College
    Ranchi University,
    Ranchi-834001
    India.
    Email: rch_nitishp@sancharnet.in

Thursday, May 8, 2008

Earthquakes becoming more frequent in Jharkhand State of India.

Earthquakes becoming more frequent in Jharkhand State.

Dr. Nitish Priyadarshi
Department of Geology
Ranchi University
Ranchi-834001


Introduction:
PHYSIOGRAPHICALLY and tectonically, India can be divided into three broad ones: Peninsular India, Indo-Gangetic plains and the Extra-peninsular India (Himalayas).
The peninsular India comprises shield elements which are supposed to be geologically stable. But earthquakes of Jabalpur and Latur have shown that the shield areas are also prone to earthquakes.

The Chotanagpur Plateau of Jharkhand State represents a part of the Indian Peninsular shield, which is a stable cratonic block of the earth’s crust. Though it is a part of the stable block it is being rocked by mild to medium tremors.
Chotanagpur has faced lots of tremors and geological movements in the geological past and now it is assumed that the plateau is free from any type of tremors or cratonic movement. Evidences of the regional tectonic movement in the plateau area are preserved in the form of faulting, folding, joints etc in the rocks.
Present topographic features of Chotanagpur are clue to the past, and geographers and geologists think that before Himalayan movement started in Tertiary times Chotanagpur and adjoining areas were a low peneplain. As a side effect of the violent Himalayan movements, parts of Peninsular upland in general and Chotanagpur peneplain in particular began to be successively uplifted. The Himalayan movements occurred three times during Early and Late Tertiary and Pleistocene times and probably the Chotanagpur peneplain was also concurrently subjected to three successive uplifts. The line of this block uplift is marked by the steep scarps that surround the Ranchi and upper Hazaribagh plateaus and across which streams descend by well-known waterfalls, e.g. Hundru and Hirni waterfalls.
Damodar valley coalfields have been affected by two phases of fold tectonics. It has been suggested that the major faults and joints present in Damodar Valley coalfield, were formed by block-tectonics, possibly during Tertiary period.

Scientists have found evidence that the oldest earthquake followed by tsunami traceable in the earth's history took place more than 1,600 million years ago in what is now Jharkhand. An international team of scientists from India, Japan and Poland has reported the discovery in a paper to appear in the forthcoming issue of the journal 'Sedimentary Geology.' This occurred long before the massive southern land mass called Gondwana land split up and the piece that now forms peninsular India floated north and crashed in the Asian land mass. The scientists analyzed sedimentary rocks deposited in "Chaibasa Formation" in eastern India. "The layers show deformations that have never been described before," Rajat Mazumder, lead author and currently a Humboldt Fellow in the university of Munich told. Mazumder and co-workers show that earthquakes caused the deformations "while the sediments were still being deposited and before their consolidation," they said. The layers containing these deformation structures are termed "seismites" and the scientists could trace the deformed horizons up to a kilometer depth. Considering their occurrence in sediments deposited between 1,600 and 2,100 million years ago, "they are among the earliest records of earthquakes known in the Earth's history," the scientists reported. "One of the strongest arguments for earthquakes as triggers of the deformation is the occurrence of strongly deformed layers (sandwiched) between unaffected layers of similar grain size," they said. Another argument is the finding of "tabular depressions," the formation of which would have required a large block of sediment to move upwards and drift away. According to the scientists a tsunami generated by an earthquake most likely detached a weakly consolidated silt/mud block and lifted and transported it away leaving behind a hole that gradually got filled by laminated sediment observed by them.

It is interesting to note that Chaibasa Formation is underlain by volcanic rocks which have been dated as 2100 million years old. In other words the sediments of Chaibasa Formation were being deposited in a basin affected by active volcanism. In such areas high intensity earthquakes do occur.
Though "deformation structures" in sedimentary rocks have been observed before, the authors say that in their opinion, those found in eastern India "represent the oldest unambiguous "seismites" that are known from the Earth's history."

Fig: Tectonic map of East Singhbhum

According to GSHAP (Global Seismic Hazard Assessment Program) data, the state of Jharkhand falls in a region of low to high seismic hazard . As per the 2002 Bureau of Indian Standards (BIS) map, this state also falls in Zones II, III & IV. Historically, parts of this state have experienced seismic activity in the M 5.0 range.
Hazard Map of Jharkhand
Significant earthquakes in Jharkhand and its possible causes:

Mild tremors struck Jharkhand Plateau on August 1999 for couple of seconds. Few years back too on July and 21st November 1997 Jharkhand Plateau was rocked by the tremors for few seconds. Due to lack of requisite equipment, the Ranchi Meteorological office was not in a position to say something about the intensity. A tremor stronger than these had shaken Chotanagpur Plateau of Jharkhand on August 21, 1988 at 4.40 AM. The epicenters of the Earthquake was 525 km north west of Shillong ( Indo-Nepal border in Bihar state) and was measured 6.6 on the scale. The 1988 quake which lasted for few seconds was reported from Ranchi, Jamshedpur, Dhanbad and Daltongonj. At Ranchi all windows started rattling. Movements of cots was similar to that in a running train. There was also commotion among birds, and cracks developed in the walls of some houses. Such high intensity earthquake in the Jharkhand State was unnatural. This plateau is peninsular and dead for any crustal adjustment. The high intensity of earthquake in Dharbanga in Bihar State, might have sent tremors to the Jharkhand. One probable cause of the relative strength of shock in Jharkhand, might be transmissibility of the tremors through crystalline rigid and strong crust underlying the Himalayas, the Indo- Gangetic depression, Monghyr region and Jharkhand. The characteristic and consequences of the earthquake of 1988 were similar to those of the shock of January 15, 1934.
The northern Bihar plain falls in the seismic zone of India and is liable to severe earth-quakes as on 15th January 1934.
Due to the devastating Sumatra Earthquake of 26th December 2004 with a magnitude Mw 9.3 Seiches(A seiche is a standing wave in an enclosed or partially enclosed body of water)occurred in the Jharkhand State. Even the Ranchi city felt the tremor.

A mild earthquake struck the adjacent border regions of the districts of Latehar and Lohardagga, Jharkhand, on 21st March 2007 at 22:04 PM local time. It had a magnitude of M?= 3.3 ( M? is magnitude type unknown) and was felt in many parts of the Chota Nagpur Plateau causing minor damage. The earthquake was centred 81.9 kms NW of Ranchi (Jharkhand), India. Tremors were felt strongly at Kuru in Latehar district and woke up many people who were asleep. A few people were reportedly “thrown of” their beds. In parts of Lohardaga district it was experienced for a duration of 5-seconds. Doors and windows rattled under the impact of the tremor and people went outdoors. In Lohardaga cracks developed in the walls of the hostel and other buildings of the Ursuline Woman’s Teacher’s Training College and many windows panes cracked. The strongest tremors were felt in northern parts of Lohardaga town. Houses were shaken at Brahani and Sikni in the Chandwa area of Latehar district. It was also felt for 10-12 seconds at Balumath, Chandwa & Latehar in Latehar district. Here, it was accompanied by the sound of a train and loose objects rattled. A 5-foot crack is thought to have developed outside a house in Chandwa. Elsewhere in the district it was felt at Barwadih, Garu, Mahuadanr and Manika. Many people spent the night outdoors fearing a stronger earthquake would follow. At Chatra, in the district of the same name, people heard doors & windows as well as household articles rattling. Light tremors were felt as far as at Gumla & Sisai in Gumla district, at Bhurkunda (including PTPS), Patratu in Hazaribagh district, Khilari, Mandar & Ranchi in Ranchi district. No damage or injuries have been reported as a result of this earthquake.Rumours of another stronger earthquake at 2 A.M. the following morning resulted in widespread panic in the region. Many people spent the entire night outdoors in the aforementioned areas. In Ranchi, patients were brought out of the hospitals and elsewhere in the region announcements were made from mosques to alert people. Panic spread in areas of adjoining districts, including those that did not experience such as Bhawanathpur, Bishnupur (Gumla), Daltonganj (Palamau), Jhumri Telaiya (Hazaribagh), Hazaribagh, Ramgarh Cantonment and Simdega.

Jamshedpur and its adjoining areas experienced at least four low-intensity tremors in the month of January, 2008. According to the different experts the tremors could well be due to the heavy rainfall that occurred last year 2007. Rain water percolating into the soil may have provided a cushion for the smaller plates to move causing earthquakes.

Huge downpours of rain can trigger earthquakes in landscapes riddled with caves and channels by increasing pressure within underlying rock, suggests a new study.
It was already known that rainfall could cause tremors, but the amount of water needed is much more than previously thought, says Steve Miller, a geologist at the University of Bonn, Germany.
In recent years, geologists have documented small earthquakes that occurred after heavy rainfall in Germany, Switzerland and France. All were low in magnitude – meaning they could be detected by seismographs, but not felt by humans.
Some experts have suggested that although the rainfall was heavy, the fact that rain could trigger an earthquake at all suggests that it takes extremely little to produce a tremor. They concluded that the Earth's crust in a delicate balance, teetering on the edge of a slight shake-up at any moment.

According to me there are possibilities that construction of large water dams, water reservoirs, different types of mining and increasing use of groundwater (which is creating vacuum inside the earth) in and around Jharkhand are major reason why these earthquakes are occurring at such frequent intervals.
Severe earthquakes can be triggered by dewatering and flooding of mines, as these activities alter the loading of the Earth’s crust and tectonic stresses in its interior. Worldwide, more than 200 studies have noted sites where human-induced stresses could have reactivated preexisting faults, triggering earthquakes with seismic moment magnitudes of up to M = 7 on the Richter scale. This can only occur where faults are already under high tectonic stresses that have built up over many years. Stable continental regions are seismically less active than unstable regions (e.g. California, Japan, and Turkey). Consequently, faults in stable continental regions can be more earthquake-trigger sensitive, since accumulated stresses have not reached failure conditions.

After becoming the new state there is boom in building industry. Lots of multistoried buildings are being built in the capital city of Jharkhand on the highly metamorphosed rocks filled with numerous joints and fractures. Very few people go for soil or rock testing before constructing huge buildings which is very essential. These constructions may disturb the balance (isostasy) of the local rock types. Stress from the skyscraper may re-open ancient earthquake fault.
Though stress and strain developing on the rocks can also be treated as the major cause of the earthquakes.

From last couple of years Jharkhand has felt few tremors in different parts of the State of low intensity and unfortunately due to its localized occurrence its intensity was not recorded.

Other causes of Earthquakes in Jharkhand:

Earthquakes of Jharkhand may be placed in one broad categories. Earthquakes originate from stress fields built up in the Precambrian shield, supporting the Vindhyan, Gondwana and younger basins.
Several events such as the 1868 Hazaribagh, 1963 Ranchi and 1969 Bankura were generated by release of stress built up in the relatively more stable Jharkhand Plateau region underlain by Precambrian formations. These, by analogy with other Peninsular Shield events such as Latur and Jabalpur earthquakes, may possible belong to the class of Stable Continental Earthquakes. This class of intraplate earthquakes occur in areas characterized by antiquity (2.5-0.5 billion years), much lower deformation rates compared to the more active regions of the intraplate regions and therefore longer periods of recurrence, reduced heat flow, greater average crustal thickness and low elastic attenuation. Several parameters of the earthquakes of the region are still not known and the classification here is, therefore, tentative.
Regarding the type of earthquakes occurring in State it may be placed under “Shallow Earthquakes” ("Crustal" quakes) which are caused by faults in the continental plates, as a result from the relative motion of sections of the plates. They are usually 1 to 5 magnitude, less than 15 miles deep, occur random and unpredictable and most of them are not even felt.

The Tatapani Fault in the western part of the state has been active since the Holocene period and extends across the border into the neighbouring state of Chhattisgarh. The Munger-Saharsa Ridge Marginal Fault runs in a north-south direction through the eastern districts of the state before entering West Bengal. However it must be stated that proximity to faults does not necessarily translate into a higher hazard as compared to areas located further away, as damage from earthquakes depends on numerous factors such as subsurface geology as well as adherence to the building codes.
Possibilities of major earthquake in this stable region cannot be ruled out. Different researches has shown that ancient fault line can be re-activated. Old continental crust contains a billion-year record of past tectonic activity. This area was once a seismically active. "We don't yet understand how faults are reactivated, but it appears that some pre-existing faults are more likely to break than others. Regarding Jharkhand the possibility of reactivation of a pre-existing fault can happen under the influence of the ambient stress field due to the India–Eurasia plate collision forces.



Reference:

Rajat Mazumder, A.J. (Tom) van Loon and Makoto Arima (2006)Sedimentary
Geology, Volume 186, Issues 1-2, Pages 19-26
Mahadevan, T.M., 2002. Geology of Bihar & Jharkhand. Geological Society of India, Bangalore.

http://www.boloji.com/environment/58.htm
http://environment.newscientist.com/article/dn13371-heavy-rain-can-trigger-earthquakes.html
http://asc-india.org/maps/hazard/haz-jharkhand.htm
http://www.springerlink.com/content/r0765k18488l23lk/
http://www.scienceblog.com/cms/ancient_fault_lines_may_have_become_re-activated.

N. Purnachandra Rao,T. Tsukuda, M. Kosuga, S. C. Bhatia and G. Suresh, 2002. Deep lower crustal earthquakes in central India: inferences from analysis of regional broadband data of the 1997 May 21, Jabalpur earthquake. Geophysical Journal International Volume 148 Issue 1 Page 132-138.


Dr. Nitish Priyadarshi
76,circular road,
Ranchi-834001
Jharkhand
India
Email: rch_nitishp@sancharnet.in