Showing posts with label Plato. Show all posts
Showing posts with label Plato. Show all posts

Tuesday, June 22, 2010

Problems of Urban growth.

Ranchi the capital city of Jharkhand State in India is expanding both vertical and horizontal resulting in lots of problem.
by
Dr. Nitish Priyadarshi

As more and more people leave villages and farms to live in cities, urban growth results. Urbanization occurs naturally from individual and corporate efforts to reduce time and expense in commuting and transportation while improving opportunities for jobs, education, housing, and transportation. Living in cities permits individuals and families to take advantage of the opportunities of proximity, diversity, and marketplace competition.
People move into cities to seek economic opportunities. In rural areas, often on small family farms, it is difficult to improve one's standard of living beyond basic sustenance. Farm living is dependent on unpredictable environmental conditions, and in times of drought, flood or pestilence, survival becomes extremely problematic.
Cities, in contrast, are known to be places where money, services and wealth are centralized. Cities are where fortunes are made and where social mobility is possible. Businesses, which generate jobs and capital, are usually located in urban areas. Whether the source is trade or tourism, it is also through the cities that foreign money flows into a country. It is easy to see why someone living on a farm might wish to take their chance moving to the city and trying to make enough money to send back home to their struggling family.
There are better basic services as well as other specialist services that aren't found in rural areas. There are more job opportunities and a greater variety of jobs. Health is another major factor. People, especially the elderly are often forced to move to cities where there are doctors and hospitals that can cater for their health needs. Other factors include a greater variety of entertainment (restaurants, movie theaters, theme parks, etc) and a better quality of education, namely universities. Due to their high populations, urban areas can also have much more diverse social communities allowing others to find people like them when they might not be able to in rural areas.

Clearly, urban settlements differ greatly in size, as mentioned by their populations. Is there a Theoretical maximum and an optimum size? Criffith Taylor and others believe that the ultimate size may be fixed by the increasing difficulty of obtaining enough water to supply unduly large numbers concentrated in a small area, while Lewis Mumford and similar authors think that the continued growth of very large cities not only produces more administrative problems than benefits. This also paralyses rather than furthers social relationships and phenomenally raises central land values, so much that land ceases to be adaptable to new needs.

Views on the optimum size of a city have altered with the march of history. Plato believed that most desirable size was 5,000, a figure which would allow everybody to hear the voice of an orator and so participate in active political life and develop varied social relations. Late nineteenth – century garden city enthusiasts in Britain thought that towns of 30,000 to 50,000 would be large enough supply all necessary human needs, whether medical, educational, social, economic or cultural.

Towns could not come into being until the surrounding countryside was capable of providing a food surplus in the past. Due to modern transport and large surpluses in many parts of the world, towns generally have little difficulty in obtaining food, even from far distant lands. Developing countries may lack the capital to give all their town folk an adequate diet, and even in developed countries there are sporadic temporary shortages, owing to failures in economic planning, poor harvests, dock strikes and traffic hold-ups occasioned by excessive rain, snow, floods, droughts etc.

The problem of water supply is more permanent and applies specifically to cities. It is becoming increasingly serious even in advanced countries which certainly have no problem in paying for the water they consume. The root of the problem lies in the fact that 98% of the earth’s surface water is contained in the salt oceans and in ice-caps. The remainder is unevenly distributed and often polluted. Over half is needed for agriculture, about a third for industry, 10 percent for domestic use.

Many cities, especially in developing countries, lack a clean supply of fresh water. In India, e.g., less than a third of the urban population has access to pure water, and the main reason why water borne diseases are rampant. Even when people are provided with purified water for drinking, they usually wash themselves and their clothing in contaminated supplies.

The demands made on water by urban industries, power stations and homes are growing at a more rapid rate than the growth of population. Many wells do not yield enough water, river pollution, like Ganga, Damodar etc. in India, is a continuing evil, and the remaining water resources- mostly in thinly populated highland areas of abundant rain- are far from many consuming centres.

After being separated from Bihar, Jharkhand state of India is now fast growing in terms of business. Ranchi the capital city is expanding both vertical and horizontal resulting in lots of problem like irregular electric supply, water supply, ground water depletion, air pollution, noise pollution, municipal waste disposal, failure of drainage systems, traffic jams etc. Surface waters are being contaminated. Seasonal diseases have also multiplied. More and more people are concentrating in the city flats which has raised the land values many fold. Ranchi earlier known as the summer capital has now become the heat furnace during summer. It is all due to the unplanned expansion of the city.

The urban heat island has become a growing concern and is increasing over the years. The urban heat island is formed when industrial and urban areas are developed and heat becomes more abundant. In rural areas, a large part of the incoming solar energy is used to evaporate water from vegetation and soil. In cities, where less vegetation and exposed soil exists, the majority of the sun’s energy is absorbed by urban structures and asphalt. Hence, during warm daylight hours, less evaporative cooling in cities allows surface temperatures to rise higher than in rural areas. Additional city heat is given off by vehicles and factories, as well as by industrial and domestic heating and cooling units. This effect causes the city to become 2 to 10 degree F (1 to 6 degree C) warmer than surrounding landscapes. Impacts also include reducing soil moisture and intensification of carbon dioxide emissions.
Owing to population growth, poor levels of hygiene, and increasing urban poverty, the urban environment in many developing countries is rapidly deteriorating. Densely packed housing in shanty towns or slums and inadequate drinking-water supplies, garbage collection services, and surface-water drainage systems combine to create favourable habitats for the proliferation of vectors and reservoirs of communicable diseases. As a consequence, vector-borne diseases such as malaria, lymphatic filariasis and dengue are becoming major public health problems associated with rapid urbanization in many tropical countries

Another change that has occurred after the oil crisis of 1973 is the vertical growth of large cities. People who were living in suburbs found it costly to travel to the city. The open spaces within the city got filled up by the construction of high rise buildings. Large bungalows and old residences were demolished and high rise buildings have come up both as commercial complexes and as residential flats. Many rich families are migrating from the suburbs to flats or apartments near the city centre. The vertical expansion of cities poses further problems in water supply, sewage disposal and traffic congestion on the roads. Traffic causes urban noise, air pollution, stress and strain in an individual.

One solution for both lateral expansion and vertical growth of a city is to develop satellite towns at a distance of 40 to 50 km from the city. The satellite town will not be a mere residential town to accommodate commuters. Such a satellite town will be both a place of work and a place of living.

Tuesday, March 25, 2008

Groundwater concept in ancient civilization

Groundwater concept in ancient civilization
By
Dr. Nitish Priyadarshi
Historical Background:
Our ancient religious texts and epics give a good insight into the water storage and conservation systems that prevailed in those days.

Groundwater development dates from ancient times. The Old Testament contains numerous references to groundwater, springs, and wells. Other than dug wells, groundwater in ancient times was supplied from horizontal wells known as qanats. These persist to the present day and can be found in a band across the arid regions of Southwestern Asia and North Africa extending from Afghanistan to Morocco. Qanats are laboriously hand constructed by skilled workers employing techniques that date back 3000 years.
Iran possesses the greatest concentration of qanats. Here some 22,000 qanats supply 75 percent all water used in the country. Lengths of the qanats extended up to 30 km, but most are less than 5 km. The depth of the qanat mother well is normally is 50 m, but instances of depths exceeding 250 m have been reported.
Some ancient Indian methods of water conservation:
The Indus Valley Civilization, that flourished along the banks of the river Indus and other parts of western and northern India about 5,000 years ago, had one of the most sophisticated urban water supply and sewage systems in the world. The fact that the people were well acquainted with hygiene can be seen from the covered drains running beneath the streets of the ruins at both Mohenjodaro and Harappa. Another very good example is the well-planned city of Dholavira, on Khadir Bet, a low plateau in the Rann in Gujarat. One of the oldest water harvesting systems is found about 130 km from Pune along Naneghat in the Western Ghats. A large number of tanks were cut in the rocks to provide drinking water to tradesmen who used to travel along this ancient trade route. Each fort in the area had its own water harvesting and storage system in the form of rock-cut cisterns, ponds, tanks and wells that are still in use today. A large number of forts like Raigad had tanks that supplied water. In ancient times, houses in parts of western Rajasthan were built so that each had a rooftop water harvesting system. Rainwater from these rooftops was directed into underground tanks. This system can be seen even today in all the forts, palaces and houses of the region. Underground baked earthen pipes and tunnels to maintain the flow of water and to transport it to distant places, are still functional at Burhanpur in Madhya Pradesh, Golkunda and Bijapur in Karnataka, and Aurangabad in Maharashtra.
Ground-water development and quality consideration were getting sufficient attention as evidenced by Vrahat Samhita (550 A. D.) Water management and conservation, well organized water pricing system in 400 B.C. Construction methods and materials of dam, tanks etc., bank protection, spillways and other considerations mentioned in the ancient books reflect the high stage of development of water resources and hydrology in ancient India.
Groundwater Theories in Ancient Philosophy:
Utilization of groundwater greatly preceded understanding of its origin, occurrence, and movement. The writings of Greek and Roman philosophers to explain the origins of springs and groundwater contain theories ranging from fantasy to nearly correct accounts. As late as the seventeenth century it was generally assumed that water emerging from springs could not be derived from rainfall, for it was believed that the quantity was inadequate and the earth too impervious to permit penetration of rain water far below the surface. Thus, early Greek philosophers such as Homer, Thales, and Plato hypothesized that springs were formed by seawater conducted through subterranean channels below the mountains, then purified and raised to the surface. Aristotle suggested that air enters the cold dark caverns under the mountains where it condenses into water and contribute to the springs.
The Roman philosophers, including Seneca and Pliny, followed the Greek ideas and contributed little to the subject. An important step forward, however, was made by the Roman architect Vitruvius. He explained that the now-accepted infiltration theory that the mountains receive large amounts of rain that perc olate through the rock strata and emerge at their base top form streams.
The Greek theories persisted through the Middle Ages with no advances until the end of the Renaissance. The French potter and philosopher Bernard Palissy (c. 1510-1589) reiterated the infiltritation theory in 1580, but his teachings were generally ignored. The German astronomer Johannes Kepler (1571-1630) was man of strong imagination who linked the earth to a huge animal that takes in water of the ocean, digests and assimilates it, and discharges the end products of these physiological processes as groundwater and springs. The seawater theory of the Greeks, supplemented by the ideas of the vaporization and condensation processes within the earth, was restated by the French philosopher René Descartes (1596-1650).
Dr. Nitish Priyadarshi
Geologist
Email: rch_nitishp@sancharnet.in