Showing posts with label Patna. Show all posts
Showing posts with label Patna. Show all posts

Monday, December 20, 2010

Geochemistry of Iodine with special reference to Bihar state of India.

Iodine deficiency is an important global health problem.
8 person out of every hundred, suffer from goiter in India.
by
Dr. Nitish Priyadarshi

Halogens are present and are volatile trace elements in most geological samples. Among them, iodine has the lowest abundance; less than 0.1 ppm in igneous rocks and less than several ppm in sedimentary rocks.

Iodine is least abundant of the halogens and is lithophile element. It is typically a dispersed element and is never concentrated enough in rocks or sediments to form independent minerals. The content of iodine is higher in air masses of marine origin than in those over the continents (Rankama and Sahama, 1950). The content of iodine seems to have some relationship to the salinity of the sea water as it is found to increase to the rise in salinity. Iodine is carried away from the atmosphere partly by rainwater and partly by direct adsorption into the soil and into plants. High solubility of iodine makes it enriched in soil and its highest concentration is noted in cultivated soil. According to most comprehensive observation by Goldschmidt(1954), the concentration of iodine in different media is as follows:

Igneous rock- 0.3 gm/tonne.
Cultivated soil- 2.0 gm/tonne.
Air- 0.0005 gm/tonne.
Rain water- 0.001-0.003 gm/tonne.
Sea water- 0.05 gm/tonne.

Konovalov (1959) found that rivers draining Tertiary marine sediment have higher iodine content than rivers draining other areas and this was considered to be due to iodine being easily leached from the marine sediments.

There is very marked increase in the iodine content of soils as compared to the rocks from which they derive. Many authors have suggested that much of the iodine in soils is derived from atmospheric sources, while another major source of soil iodine is that supplied by plant remains. Silty and clay soils appear to be enriched in iodine. It was found that clay fractions of soil fix iodide, a feature which is most marked for illite.

It has been generally accepted that the oceans are a major source of atmospheric origin; other sources are volcanic gases and rotting bio-materials. It has also been observed that some iodine in urban atmosphere may be derived from combustion of fossil fuels.

Iodine is a micro constituent in all plants and animals. Its influence on plant life is unknown and it may only be ballast element (Rankama and Sahama, 1950). Average content of iodine in marine life (from both plant and animal) is more than the fresh water and inland life (Cauer, 1938). In higher animals like mammals it plays a very important role, when it is present in the thyroid gland in the form of amino acid-thyroxin that controls the rate of metabolism.

Aside from tungsten, iodine is the heaviest element to be essential in living organisms, and iodine is the heaviest element thought to be needed by higher animals. About 19,000 tons are produced annually from natural sources.

A case study of Bihar State in India:

Iodine deficiency is an important global health problem with an estimated 200 million people affected by iodine related problems (Moynahan,1979). Indian Coalition for Control of Iodine Deficiency Disorders (ICCIDD) reveals that 79 million or 8 person out of every hundred, suffer from goiter in India (Hindustan Times, New Delhi, 25-11-2001).

The human body contains very little iodine (0.00004% or 0.4 ppm), yet it is essentially required to be maintained through food and water. Any disruption in iodine content jeopardizes the human metabolism. Thyroxin, a hormone secreted by the thyroid gland located on both side of the trachea contains about 65% iodine. In the absence of optimal quantity of iodine, the gland increases in size to compensate the deficiency of iodine and adversely affects the human metabolism. Water with iodine concentration less than 5-10 µg/l produces goiter.

The Gandak basin in Bihar is also known to be goiter prone since long. A detail research was carried out by Prof. N.C. Ghose (2003) of Department of Geology, Patna University on distribution of iodine in soil-water system in the Gandak Basin in Bihar.

According to Prof. Ghose, the vast tract in Gandak basin in north Bihar is known iodine deficient area and the population is prone to dreaded and endemic disease like goiter. Surface water of this area, iodine content ranges from 1.56 µg/l to 5.52 µg/l, while in groundwater which is the only source for drinking, it varies from 2.1 µg/l to 4.56 µg/l. In soil, the iodine content ranges between 3.65 µg/gm to 12.59 µg/gm. Season wise, there is considerable variation in iodine content both in surface and groundwater. During monsoon it reduces considerably in surface water due to dilution and in groundwater it reduces owing to heavy recharge of the aquifer system through infiltration. In soil, there is no definite pattern in seasonal variation in iodine content. In major part of the study area, the iodine content is deficient and ranges between 3 and 4 µg/l. The cause of low iodine is attributed to repeated floods and erosion of top soil which is the main source of iodine to the groundwater system.

The spatial variation of iodine in both surface and groundwater reveals a striking feature. It is observed that the abundance of iodine both in surface and groundwater decreases downstream from West Champaran to Vaishali. However, in surface water, the profile of iodine content of river Gandak increases again near Hajipur, where it rises to 5.52 µg/l. the high incidence of iodine at the confluence of Ganga and Gandak near Patna is due to mixing of the two river waters.

Low iodine content in water (1-4 µg/l) in the vast tract of land in East and West Champaran, Muzaffarpur and Vaishali districts of North Bihar plain makes the people vulnerable to goiter.

Reference:

Rankama, K. and Sahama, Th. G. (1950) Geochemistry, Univ. Chicago Press, Chicago,912p.

Goldschmidt, V.M. (1954) Geochemistry, Clarendon Press, Oxford,730p.

Cauer, H. (1938) Chemisch-bioklimatogische Studien in der Bretagne. II. Mitteilung: Beeinflussung de mitteleuropaischen Jodmilieus durch die Breton ische Jodindustrie auf dem Wege der Luft. Biochen, Z. 299, p.69.

Moynahan, E.J. (1979) Trace elements in man. Phil. Trans. Roy. Soc. London, B-288, pp.65-79.

Konovalov, G.S. (1959) Removal of microelements by the main rivers of the U.S.S.R. Dokl. Acad. Sci. S.S.S.R. 129, p912.

Ghose, N.C., Das, K. and Saha, D. (2003) Distribution of Iodine in Soil-Water system in the Gandak Basin, Bihar, Journal of Geol. Soc. of India, pp 91-98.

Tuesday, December 29, 2009

Arsenic alarm in Bihar and Jharkhand Villages of India.

Bihar and Jharkhand is facing one of the gravest natural disasters in the form of arsenic contamination of ground water.
by
Dr. Nitish Priyadarshi

Thousands of people living in over hundreds of villages in different district of Bihar and Sahebganj district of Jharkhand state in India are facing serious threat to their health due to alarmingly high quantity of arsenic present in the underground water.

Bihar is facing one of the gravest natural disasters in the form of arsenic contamination of ground water. In the first detailed study of ground water quality, the Department of Environment and Water Management, A.N.College, Patna, has already submitted Interim Reports to PHED and UNICEF about the alarming findings on arsenic poisoning cases in the districts of Patna, Bhojpur, Vaishali and Bhagalpur. The study was conducted from April 2004 to May 2006, the study area being confined to 10 kms. wide belt along the Ganga river as per the instructions of PHED and UNICEF.

According to Dr.Ashok Ghosh, Principal Investigator of Project Arsenic, Dept. Of EWM, A.N.College, these findings are just the tip of the iceberg, as more contaminated aquifers are waiting to be detected in the remaining parts of the state. The water quality testing was done initially by Field Test Kits and then confirmed by AAS or UV Spectrophotometric tests. Epidemiological studies indicate that drinking water having more than permissible arsenic levels of 10 ppb. increases the mortality rates as arsenic is a bio-accumulative toxin.

Persons suffering from arsenicosis have not yet responded to known treatment procedures. The high the intake of arsenic, along with under nourishment and lack of medical help have worsened the lives of the population in the arsenic affected rural areas. Arsenic can also contaminate standing food crops if it is present in the soil and soil water. As Bihar Plains are highly fertile and its crops are marketed to many distant places, apart from being locally consumed, it becomes imperative to test the levels of arsenic in the food chain too. What is worrisome is that arsenic contaminated ground water tables have abrupt occurrences both over time and space. This explains why a public hand pump in village Ramnager in Maner tested 30 ppb. in the post monsoon period and more than 60 ppb. in the month of May. Also arsenic manifestation exists at different levels in different areas. In north-west Maner, arsenic contaminated hand pumps have a shallow depth of between 60 to 80 feet in the diara belt.

In Bhojpur, the depth of contaminated aquifers goes down to 150 feet away from new diara land, while in Vaishali, arsenic is found in the shallow and middle aquifers at an average distance of 5 km. away from the river bank. Regular monitoring of drinking water from hand pumps is immediately required as a part of the mitigation strategy. Patna, the first district to be covered, revealed pockets of high arsenic contamination, above the acceptable limit of 10 ppb., in 171 villages in Maner, Danapur, Sampatchak, Barh, Bakhtiarpur, , Fatuha, Khusrupur, Phulwari, Mokama, Pandarak and Patna City.

1060 village hand pumps were arsenic contaminated The highest AAS reading of arsenic level in government hand pump water is 724 ppb. in village Naikatola in Maner, 450 ppb. in Kasimchak village in Danapur, 553 ppb. in Ghiaspur Mahazi and 538 ppb. in Kala Diara, Bakhtiarpur,, and 484 ppb. in Malahi Banda village in Barh. Sampatchak Block has low contamination levels of below 50 ppb. over a larger area in most of the villages. In Bhojpur, the highest AAS test readings are 1861 ppb. and 1064 ppb. in Pandey tola, Barhara Block, a situation far more serious than the one represented by the much-touted village Ojhapatti of Shahpur Block. Out of the 6292 hand pumps tested, 47.70 % were arsenic contaminated hand pumps. In Barhara, 62.84%, in Udwantnagar 59.39%, in Shahpur 40.41%, in Behea 37.17%, in Koilwar, 29.20%, and in Ara 25.88% of Block level hand pumps were arsenic contaminated. In Vaishali, all the Blocks covered within 10 km. along the Ganga banks, has low level arsenic contamination at present.
In Bhagalpur district most affected areas are Kahalgaon, Pirpainti, Sabaur and Sultanganj. A detailed study has been presented on groundwater metal contents of Sahebgunj district in the state of Jharkhand, with special reference to arsenic. Both tubewell and well waters have been studied separately with greater emphasis on tubewell waters. Groundwaters of all the nine blocks of Sahebgunj district have been surveyed for iron, manganese, calcium, magnesium, copper and zinc in addition to arsenic. Groundwaters of three blocks of Sahebgunj, namely, Sahebgunj, Rajmahal and Udhawa have been found to be alarmingly contaminated with arsenic present at or above 10 ppb.
Rivers flowing through the coal fields of Jharkhand have been reported to carry arsenic responsible for arsenic poisoning in downstream areas of West Bengal. The coal fields of Bachara and Piprawar areas of Jharkhand have contaminated the waters of the Damodar and its tributary, the Safi. According to author, arsenic contamination arises mainly due to the dumping of waste from the coal mines along the river bed. Coals of the area mentioned contains sufficient amount of arsenic.
Arsenic upto 608 parts per billion (ppb) was detected against the permissible limit of 10 ppb in some villages of Kahalgaon block in Bhagalpur district in 2005. Work was carried out by Dr. Sunil Chaudhary of TM Bhagalpur University.
A detailed work was carried out by Dr. Ashok Ghosh, Professor-in-charge, department of environment and water management, A.N. College Patna, in the arsenic affected areas of Bihar State. He found that out of 27,061 hand pumps, 7,218 pumps tested had arsenic contaminated water greater than 10 ppb (26.67%). Highest arsenic value recorded was 1861 ppb. Study also revealed that 87% of the Trivalent arsenic was found in the groundwater of Bihar State.
The study by Bihar's Public Health and Engineering Department (PHED) reveals that the average arsenic content in drinking water in the 12 districts is 500 parts per billion (ppb). The state capital, Patna, is among the affected areas.
According to Dr. Ghosh, a total of 16 Bihar districts (57 blocks) are affected by high level of arsenic in the groundwater. Worst-affected districts are Bhojpur, Buxar, Vaishali, Bhagalpur, Samstipur, Khagaria, Katihar, Chapra, Munger and Dharbanga.
A very alarming recent finding by the research group is the detection of high arsenic content (more than 50 ppb) in the water of River Jaminia – flowing parallel to River Ganga in Bhagalpur district of Bihar.This river merges with Ganga and water from this river is being supplied to urban Bhagalpur without any treatment, alarmed Dr. Ghosh.
Alarmed by the severity of arsenic’s impact on human body in these villages, the team also collected samples of hair and nail of affected persons for detail medical examination to ascertain the level of damage, said Principal Investigators Dr. Ashok Kumar Ghosh and Nupur Bose of A.N. College Patna. The findings indicated that a wider area, including the fertile irrigational lands, was under the grip of arsenic.
According to another research report done by Mr. Dipanka Chakraborti in Semria Ojha Patti village in the Middle Ganga Plain, Bihar, where tube wells replaced dug wells about 20 years ago, analyses of the arsenic content of 206 tube wells (95% of the total) showed that 56.8% exceeded arsenic concentrations of 50 micro g/L, with 19.9% greater than 300 micro g/L, the concentration predicting overt arsenical skin lesions.

Reference:

http://ghosh51.tripod.com/id15.html
http://www.biomedexperts.com/Abstract.bme/12842773/Arsenic_groundwater_contamination_in_Middle_Ganga_Plain_Bihar_India_a_future_danger
http://news.bbc.co.uk/2/hi/south_asia/6982031.stm

Saturday, August 8, 2009

Fire erupted in National Highway in Jharkhand State of India.

Coal supply and environment are going to be badly affected.
Explosions are being heard.
By.
Dr. Nitish Priyadarshi





Ramgarh district administration of Jharkhand state of India on Friday (August 7,2009) suspended the movement of vehicles on the 35 Km stretch of National Highway (NH) 33 between Ranchi (capital of Jharkhand) and Patna (capital of Bihar). The underground fire erupted violently on 750 metre –stretch on highway on Friday. Explosions are also being heard.
Supplies of coal from this area to other parts of the country are going to be badly affected due to this fire and closure of the most important road. Other than environmental it is also going to affect the supply of the food grains to other parts of drought affected area of the Jharkhand state.
For detail story please scroll down this blog.

Tuesday, August 4, 2009

Sedimentation by Himalayan Rivers may cause Earthquakes and Land subsidence in Eastern India.

It's not a question of whether the big one is coming, only of when.
by.
Dr. Nitish Priyadarshi
Image of the Ganges River delta and the Bay of Bengal acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS). This image shows the massive amount of sediments delivered to the Bay of Bengal by the Ganges River, sediments that are derived from erosion of the Himalayan mountain range to the north.
Sediments deposited in Bay of Bengal


Sediment loads in Kosi River in Bihar.

The Indian landmass, a floating continent started to collide with the Asian landmass some 20 million years ago (m y). After its separation from South Africa and Madagascar the floating continent must have been like a Noah’s Arc carrying all its fauna and flora on its body. The great collision between the two landmasses led to the formation of the youngest and tallest mountain ranges, the Himalayas.

Once the Himalayas started to rise a southward drainage developed. The Himalayas subsequently controlled the climate of the newly formed continent, and there started the season of monsoon as well. The river system thus developed because of rains and melting snow started to drain south into the fore-deep. The newly formed rivers were like sheets of water flowing towards the fore-deep carrying whatever came in their way. Once the rivers reached the plains their gradients became lesser, their hydraulics changed and they started to dump their load. During monsoons these rivers carried a sediment load which was many times more than their normal load. All the material they carried was dumped enroute their final destination, the Sea.

The sediments are carried from their point of origin to the local stream network commonly by mass weathering processes, typically soil creep, and eventually become part of the stream load. Very fine fragments move quickly along the network as suspended load, but the downstream progress of larger fragments is usually very slow. Thus, the weathering process does not end in the source area but continues to operate during the long process of stream transport.

Sedimentation rates generally cannot be expressed in absolute data because periods of rapid sedimentation alternate with periods of slower deposition, non-sedimentation, or erosion. Nevertheless, it is important to gain some understanding of the average values of net sedimentation in various depositional environments in order to better comprehend the geological and chemical processes that take place on the surface of the earth. An understanding of net sedimentation rates has become increasingly valuable with onset of intensive water pollution studies, because sedimentation is one of the most important processes in the removal of pollutants from natural waters.

Presently sedimentation loads are being considered as one of the possible cause of earthquakes. It works on the theory that deposition of sediments alters the loading of the earth’s crust and tectonic stresses in its interior. Such stresses could reactivate preexisting faults.
Combination of the biological, chemical, geological, and geographical factors that influence sedimentation rates are almost infinite, are different for each depositional environment, and have continuously fluctuated throughout the past.
The most extensive vertical deposition of sediments by Himalayan rivers flowing through Uttar Pradesh, Bihar, Jharkhand, and Bengal States of India, occurs during floods (July to October).

Coleman (1969) investigated channel deposition and erosion patterns of the braided Brahmaputra River in India during flooding and found that as the current velocity decreased, rapid sedimentation occurred, and as much as 3 m. of sediment was deposited along the channel bottom. When a meandering river floods its banks, its velocity is rapidly checked, and sediment deposition occurs adjacent to the banks. The rate of floodplain deposition usually ranges from several mm to several cm/year (Kukal, 1971).
Each year these rivers were flooded leaving behind a fresh layer of sediments. The Indo-Gangetic plains are a product of such floods. Study carried out by Rajiv Sinha, of Geoscience group, IIT Kanpur has brought to light amazing quantity of sediment load carried by the Ganga River in its present hydrodynamic regime. Gangetic Rivers erode bulk of the sediments from upstream areas in the Himalayas and deposit part of it in the alluvial plains and a significant part in the Bay of Bengal. His study reveals that the Ganga river annually erodes around 749 million tonnes of sediments, mostly from the Himalayas, brings about 729 million tonnes at Farrakka and finally dumps 95 million tonnes in the Bay of Bengal. Thus the floodplain of the Ganga gets an annual increment of about 65 million tonnes of sediments.

The quantity of sediments eroded by the river depends upon the gradient, distance from the source area and also the geology and geomorphology of the terrain. Thus Ganga at Haridwar and Yamuna at Allahabad are characterized by low sediment yield of 150-350t/km2/yr, while the eastern tributaries like Kosi and Gandaki carry a much higher sediment load of 1500-2000t/km2/year.

Along the river's traverse, large tributaries enter the Ganga and significantly increase its flow and change its character. The Ganga is joined by the Ram Ganga, Yamuna, Ghaghara, Gomti, Gandak and Kosi tributaries. The rivers of the Ganga basin carry one of the largest sediment loads in the world. Today sediment loads in the Ganga are higher than in the past due to the complete deforestation of the Gangetic plains and the ongoing deforestation of the Himalayan foothills.

Sedimentation in plains of Ganga River and Bay of Bengal.

In the plains Kosi (major tributary of Ganga) River is building up a large delta of its own through which its channels have wandered for centuries. It is believed that the Kosi originally joined the Mahananda, a river coming from the Darjeeling Himalayas. It is known that the Kosi flowed by Purnea (Bihar) 200 years ago, but its present course is about 160 km to the west of that place, having swept over an area of 10,500 sq. km on which it has deposited huge quantities of sand and silt (Krishnan, 1982). It now joins the Ganga 32 km west of Manihari but formerly it used to join that river near Manihari itself. The Kosi is notorious for its frequent and disastrous floods and the vagaries of its channels. In high flood it is said to have a flow of nearly one million cusecs loaded with much gravel, sand and silt (Krishnan, 1982).

The Hooghly River (main channel of the Ganga in West Bengal) estuary is notorious for its sand banks and dangerous shoals of which the James and Mary Sands, 56 km below Calcutta (now Kolkata) and between the mouths of the Damodar and Rupnarain, are well known. New areas are being reclaimed by the sediments brought down by the Ganga. These are known as the Sundarbans.

Compared to the Peninsular rivers, the three main Himalayan river systems are mighty giants. The Indus carries to the sea an average of about a million tons of silt per day, the Ganges a little less and the Brahmaputra a little more (Krishnan, 1982). The Irrawaddy has been estimated to transport about two-third million tons of silt per day. The Himalayan rivers are fed both by rain and snow, by rain during June to September and by snow during the warmer half of the year. In their courses through the mountains they have good gradients and carry much coarse materials including pebbles and boulders, brought in by glaciers and also torn off from the beds and banks. They carry enormous quantities of fine sand and silt derived from the Himalayas as well as from higher peninsular up-lands.

The Ganga and the Brahmaputra have changed their courses in the plains frequently in historic and pre-historic times leaving behind huge sediments in the plains. Deposition of sediments in Bihar, Bengal, and in Bay of Bengal is going on from the geological past. Millions of tons of sediments are being deposited per day by the Himalayan rivers in the Eastern India thrusting pressure over the crust below.

Now it is widely accepted that huge sediment loads may cause mild to high tremors even in the non-seismic zone. This may be due to the great lateral thrust of sediment load contributing to stress imbalances or due to the reactivation of subterranean faults by the newly developed stresses or due to increased pore pressure in the adjoining rocks which lowers their shearing strength, resulting in earthquake occurrence.

An earthquake is generally caused by dislocation in the earth’s crust along pre-existing cracks or faults. The cause of earthquakes is probably the existence of such faults or cracks in the bottom of the depression hidden under alluvium. Moreover, there are well marked reversed faults at the junction of the outer and the inner Himalayas, and when dislocation occurs along these faults, earthquakes result.

An additional factor favoring dislocation along such surface or subterranean faults is the strain which exists between the Himalayas and the Bihar plains. This strain is due to the following facts. The section of the Himalaya north of the Bihar is the highest mountain region of the world. The higher a region, the more it is subjected to erosion. So, vast amount of sediments are being eroded from the Himalayas and carried down to the Bihar plains as in the case of Kosi river which contributes heavy sediment in Bihar plains. The silt yield of the Kosi is about 10 cubic yard /acre/yr, one of the highest in the world. As the mountains are eroded they are deloaded and have a tendency to rise. On the other hand, the plains get loaded by the sediments and have a tendency to subside. These opposed tendencies of movements between the Himalayas and the Bihar plains cause strain in the hinge-zone, i.e. in the southern part of the mountains. Here fault already exists. Dislocation may occur along these faults as a result of the strain and devastating earthquakes may result.

The entire area has undergone downwarping due to Himalayan upheaval resulting in the formation of transverse faults and dislocations in the basement rocks, along pre-existing faults or cracks aided with occasional earthquakes. The foothills of the Himalayas, the Indo-Gangetic plains and the sedimentary basins of Vindhyans are all quake-prone areas of the Bihar state.

Several faults have been identified in the region and some have shown evidence of movement during the Holocene epoch. The West Patna Fault runs in a NE-SW direction from near Arrah in the south to the Nepalese border near Madhubani in the north. Running almost parallel to it is the East Patna Fault which extends from the south-east of Patna in the south to the Nepalese border to the east of Madhubani. Another fault, this one also lying parallel to the previous two, is the Munger-Saharsa Ridge Fault which runs from Biharsharif to near Morang in eastern Nepal. Apart from these there are east-west running tear faults in the region that control the courses of the main rivers.
The Gandak fan is bounded by the courses of the Ghagra and Rapti in the west, the Ganga in the south and the Rohini in the north. The courses of all these streams are along faults (Mohindra and Prakash, 1994).

The Gangetic plains, of which the Kosi megafan forms a part, is bound by E-W faults, which on analogy with the main boundary thrust may be thrust faults. The Kosi megafan is bound on the west by a NE trending prominent sinistral fault causing an offset of some 20 km of the Siwaliks juxtaposed against the Gangetic alluvium. There are several NW trending faults on the eastern fringes of the Kosi megafan (Mahadevan, 2002).

Bengal basin, having an area of 89000 square kilometers and sedimentary fill of 10-15 km, is the northernmost of the east coast basins of India . Indian Shield and Shillong massif form the western and northern limits of Bengal Basin. Eastwards the Basin extends into Bangladesh and is bounded by Arakan Yoma geanticlinal uplift. Southwards Basin plunges into Bay of Bengal beneath the continental shelf. Tectonically the basin can be divided into four structural elements i.e. basin margin fault zone, shelf, hinge zone/slope break and basin deep.

The tectonic history of Bengal Basin indicates that the drainage pattern in the Bengal basin as a whole had been and is greatly controlled by the tectonic features of the basin. Considerable evidence has been recorded of significant tectonic movements within and along the boundary of the basin in late Tertiary and the Quaternary times. Auden (1949) postulated that the western margin of the Bengal basin is faulted and the major tectonic movements have taken place along this zone in the Pleistocene.

Rocks at the depth in crust are subjected to the load pressure of the overlying column of rocks and sediments. This pressure is related to the thickness and mean density of the overlying material or sediments. Several million years under stress, most rocks will exhibit the kind of ductile behaviour familiar to all geologists. The rocks under higher stresses, however, will fracture and generate earthquakes (Park, 1983).

The San Francisco earthquake of 1906 was a major earthquake that struck San Francisco, CA and the coast of Northern California at 5:12 A.M. on Wednesday, April 18, 1906. The 1906 San Francisco earthquake was caused by a rupture on the San Andreas Fault, a continental transform fault that forms part of the boundary between the Pacific Plate and the North American Plate. This fault runs the length of California from the Salton Sea in the south to Cape Mendocino to the north, a distance of about 800 miles (1,300 km). The earthquake ruptured the northern third of the fault for a distance of 296 miles (477 km). The maximum observed surface displacement was about 20 feet (6 m); however, geodetic measurements show displacements of up to 28 feet (8.5 m).
It was interpreted that earthquake was caused due to large seasonal sediment loads in coastal bays that overlie faults as a result of the erosion.

Sedimentation also cause land subsidence. Subsidence may result from the accumulation of large volumes of sediment at the earth's surface in what is known as a sediment basin. An obvious setting in which this occurs is at river deltas. Each day, the Mississippi River deposits up to 1.8 million metric tons of sediment at its mouth near New Orleans. The weight of this sediment contributes to a gradual subsidence of the land on which New Orleans resides. Basins between mountains also can subside due to the weight of accumulating sediments.

Wherever sediments accumulate, we can be certain that in some other locality, a source has been relatively elevated with respect to the place where the strata are being deposited.

A delta is a subsidence-prone area because it receives a huge volume of sediments, which can be compressed due to post depositional consolidation, and the load of which can result in detectable isostatic sinking of the earth's crust.

In the year 2008 lots of reports were there regarding development of big cracks on the surface overnight in many parts of Uttar Pradesh state of India. This may be the side effects of land subsidence.

Two prehistoric seismic events dated to have occurred: (i) during 1700 to 5300 years BP and (ii) earlier than 25,000 years BP. From last several years Ganga Basin has not been affected with any major tremors or earthquakes, except of 1833, 1934 and 1988 earthquakes which rocked North Bihar and Nepal. Seeing the load of sediments, possibilities of major earthquakes cannot be ruled out in Eastern India including Bihar, neighbouring Uttar Pradesh and Jharkhand, and Bengal Basin. Most affected areas may be Munger, Dharbanga, Purnia, Bhagalpur, Saharsa, Supaul, Katihar, Patna in Bihar State, Sahibganj, Godda, Pakur etc. of Jharkhand State. It's not a question of whether the big one is coming, only of when.

Reference:

Auden, J.B., 1949. Proc. Ind. Nat. Instt. Sciences.,15.

Coleman, J. M., 1969. Brahmaptura River: Channel processes and sedimentation. Sed. Geol.,3, pp. 129-239.

Dasgupta, S., Pande, P., Ganguly, D., Iqbal, Z, Sanyal, K, Venkatraman, N.V., Dasgupta, S., Sural, B., Harendranath, L., Mazumdar, K., Sanyal, S., Roy, K., Das, L.K., Misra, P.S., Gupta, H. 2000. "Seismotectonic Atlas of India and its Environs", Geological Survey of India.


Krishnan, M.S. 1982. Geology of India and Burma. CBS publishers and distributors, India.

Kukal, Z., 1971. Geology of Recent Sediments. New York: Academic Press (in Czechoslavakia: Prague, Czechoslovak Academy Sci.), 490p.

Mahadevan, T. M. 2002. Geology of Bihar and Jharkhand. Geological society of India, Bangalore.

Mathur, S.M., "Physical Geology of India", National Book Trust of India, 1998.


Mohindra, R. and Prakash, B. 1994. Geomorphology and neotectonic activity of the Gandak mega-fan and adjoining areas, middle Gengetic Plains. Jour. Geol. Soc. India, v.43, pp. 149-157.

Park, R.G., 1983. Foundations of Structural geology. Blackie & Son Ltd. Glasgow.

http://adsabs.harvard.edu/abs/2007AGUFM.B23B1269G
http://www.agu.org/pubs/crossref/2008/2007JF000909.shtml
http://www.indianexpress.com/news/silting-not-pollution-chocking-ganga/376907/
http://www.auburn.edu/~alleykd/envirolitigators/gangatext.htm
http://science.jrank.org/pages/6563/Subsidence-Geologic-subsidence.html
http://disc.sci.gsfc.nasa.gov/oceancolor/additional/science-focus/ocean-color/sedimentia.shtml
http://geology.geoscienceworld.org/cgi/content/abstract/28/12/1083
http://www3.interscience.wiley.com/journal/68501812/abstract?CRETRY=1&SRETRY=0
http://en.wikipedia.org/wiki/1906_San_Francisco_earthquake
http://www.onepetro.org/mslib/servlet/onepetropreview?id=00014598&soc=SPE&speAppNameCookie=ONEPETRO
http://www.indiaenvironmentportal.org.in/content/palaeoliquefaction-evidence-prehistoric-largegreat-earthquakes-north-bihar-india
http://timesofindia.indiatimes.com/NEWS/City/Patna/Bihar-vulnerable-to-quakes/articleshow/977183.cms

Friday, July 24, 2009

Underground fire is threatening national highway of Jharkhand state of India.

Land subsidence and mild tremors can be felt in the affected area.
by
Dr. Nitish Priyadarshi










The National Highway 33 and surrounding environment of Jharkhand state of India may be damaged if an ongoing underground fire further engulfs an abandoned mine of Central Coal Field Ltd (CCL) in Ramgarh district.
The mine fire was detected a month ago and is spreading to the new areas.

The road connects capital city of two states i.e. Jharkhand and Bihar and is one of the important mode of communication of the area.

The fire has reached the national highway which is situated near the closed coal mine.
The fire was detected by local residents last week in the mine near Lohagate of Kuju colliery in Ramgarh, about 70 km from state capital Ranchi.

The fire in the closed mines of CCL near Kuju of Ramgarh district has drawn close to the national highway, posing a threat to a three-km-long stretch. Smoke emanating from the underground fire is clearly visible near the highway.

It is not only the fire which is threatening the area but it is also threatening the environment, life and health of the village people staying beside the road. Forest area is also under threat. Threat of land subsidence in the area has increased. Mild tremors can be felt in the area.

Coal also contains many trace elements, including arsenic and mercury, which are dangerous if released into the environment. Coal also contains low levels of uranium, thorium, and other naturally-occurring radioactive isotopes whose release into the environment may lead to radioactive contamination. While these substances are trace impurities, enough coal is burned that significant amounts of these substances are released, paradoxically resulting in more radioactive waste than nuclear power.

Toxic trace elements coming out due to burning of the coal may affect the soil and surface water of the area. It is not only the trace element which may be affecting the area but gases like carbon dioxide, sulfur dioxide and carbon monoxide may also affect the area.

These burning underground fires are difficult to locate and may not be extinguished. Fire is said to be now spreading to the newer areas.

Fires can cause the ground above to subside, combustion gases are dangerous to life, and breaking out to the surface can initiate surface wildfires.
According to the CCL officials fire has been caused due to the illegal coal mining done by the local poor people.
Work will soon begin on building a diversion on the National Highway-33, connecting Ranchi to Patna, to avert any accident as a raging fire in a coal mine has threatened a section of the road.




Wednesday, July 8, 2009

Ganga river pollution in India- A brief report.

Ganga is becoming toxic day by day.
by
Dr. Nitish Priyadarshi



Most ancient civilizations grew along the banks of rivers. Even today, millions of people all over the world live on the banks of rivers and depend on them for their survival. All of us have seen a river - large or small, either flowing through our town, or somewhere else. Rivers are nothing more than surface water flowing down from a higher altitude to a lower altitude due to the pull of gravity. One river might have its source in a glacier, another in a spring or a lake. Rivers carry dissolved minerals, organic compounds, small grains of sand, gravel, and other material as they flow downstream. Rivers begin as small streams, which grow wider as smaller streams and rivers join them along their course across the land. Eventually they flow into seas or oceans. Unfortunately most of the world's major rivers are heavily polluted.

The pollution of environment is the ‘gift’ of the industrial revolution. Prior to this the agrarian cultures created significant environmental deterioration in the form of soil erosion- through deforestation and overgrazing. The environmental degradation is a by product of modern civilization.

There has been a steady deterioration in the quality of water of Indian rivers over several decades. India’s fourteen major, 55 minor and several hundred small rivers receive millions of litres of sewage, industrial and agricultural wastes. Most of these rivers have been rendered to the level of sewage flowing drains. There are serious water quality problems in the cities, towns and villages using these waters. Water borne diseases are rampant, fisheries are on decline, and even cattle are not spared from the onslaught of pollution.
According to World Wide Fund for Nature (WWF) five rivers in Asia serving over 870 million people are among the most threatened in the world, as dams, water extraction and climate change all take their toll.
The Ganges, Indus, Yangtze, Salween-Nu and Mekong-Lancang rivers make up half of the WWF’s “top ten” most threatened river basins.
India has a large number of rivers that are lifelines for the millions living along their banks. These rivers can be categorized into four groups:
1.Rivers that flow down from the Himalayas and are supplied by melting snow and glaciers. This is why these are perennial, that is, they never dry up during the year.
2.The Deccan Plateau rivers, which depend on rainfall for their water.
3.The coastal rivers, especially those on the west coast, which are short and do not retain water throughout the year.
4.The rivers in the inland drainage basin of west Rajasthan, which depend on the rains. These rivers normally drain towards silt lakes or flow into the sand.
River Ganga (Ganges) of India has been held in high esteem since time immemorial and Hindus from all over the world cherish the idea of a holy dip in the river under the faith that by doing so they will get rid of their sins of life. More than 400 million people live along the Ganges River. An estimated 2,000,000 persons ritually bathe daily in the river. Historically also, Ganga is the most important river of the country and beyond doubt is closely connected with the history of civilization as can be noticed from the location of the ancient cities of Hardwar, Prayag, Kashi and Patliputra at its bank. To millions of people it is sustainer of life through multitude of canal system and irrigation of the wasting load. Hundreds of the villages and even the big cities depend for their drinking water on this river. It is believed, a fact which has also been observed, that the water of Ganga never decays even for months and years when water of other rivers and agencies begins to develop bacteria and fungi within a couple of days. This self purification characteristics of Ganga is the key to the holiness and sanctity of its water. The combination of bacteriophages and large populations of people bathing in the river have apparently produced a self-purification effect, in which water-borne bacteria such as dysentery and cholera are killed off, preventing large-scale epidemics. The river also has an unusual ability to retain dissolved oxygen.
With growing civilization and population all over how long Ganga will retain its self purification characteristics only time can judge.
River source:
The Gangotri Glacier, a vast expanse of ice five miles by fifteen, at the foothills of the Himalayas (14000 ft) in North Uttar Pradesh is the source of Bhagirathi, which joins with Alaknanda (origins nearby) to form Ganga at the craggy canyon-carved town of Devprayag. Interestingly, the sources of Indus and the Brahmaputra are also geographically fairly close; the former goes through Himachal Pradesh and fans out through Punjab and Sind (Pakistan) into the Arabian Sea. The latter courses for most of its tremendous length under various names through Tibet/China, never far from the Nepal or Indian borders, and then takes a sharp turn near the northeastern tip of India, gathers momentum through Assam before joining the major stream of the Ganga near Dacca in Bangladesh to become the mighty Padma, river of joy and sorrow for much of Bangladesh. From Devprayag to the Bay of Bengal and the vast Sunderbans delta, the Ganga flows some 1550 miles, passing (and giving life to) some of the most populous cities of India, including Kanpur (2 million), Allahabad, Varanasi, Patna, and Calcutta (14 million).

The largest tributary to the Ganga is the Ghaghara, which meets it before Patna, in Bihar, bearing much of the Himalayan glacier melt from Northern Nepal. The Gandak, which comes from near Katmandu, is another big Himalayan tributary. Other important rivers that merge with the Ganga are the Son, which originates in the hills of Madhya Pradesh, the Gomti which flows past Lucknow.
Previous Work:
A number of investigations have been carried out on the physiochemical and biological characters of the Ganga. Lakshminarayana (1965) published a series of papers reporting the results of studies carried out at Varanasi during the period between March, 1957 and March, 1958. it was observed by him that the values of the most of the parameters decreased during rainy season while no marked variation was observed during winters and summers.
In the same year Chakraborty et.al. (1965) from Kanpur reported the water quality of Ganga at J.K. Rayon’s water intake point and at Golaghat and Bhairoghat pumping stations situated at the upstream of the river. It was concluded that the water quality gradually deteriorated as it passes from Bhairoghat pumping station to the J.K. Rayon water intake point in summers because in this stretch the river received waste waters from number of sewage drains.
A year later Saxena et.al. (1966) made a systematic survey of the chemical quantity of Ganga at Kanpur. According to the study, the biological oxygen demand, i.e. B.O.D. varied from 5.3ppm (minimum) in winter to 16.0ppm (maximum) in summer. The chloride ranged between 9.2 and 12.7 ppm and the river was found to be alkaline in nature except in rainy season. He concluded that the tanneries significantly increased the pollution load of river as they discharge huge amounts of effluents containing organic wastes and heavy metals. It was further reported that forty five tanneries, ten textile mills and several other industrial units discharged 37.15 million gallon per day of waste water generating BOD load of approximately 61630 Kg/day.
Subsequently Agarwal et.al.(1976) studied the bacteriological population of the river water and concluded that addition of untreated waste and sewage was responsible for the presence of pathogenic organisms posing threat to the residents of the Varanasi city.
Hydrobiological features of the river Ganga was studied by Pahwa and Mehrotra (1966). The authors studied a stretch of 1090 kms. of river Ganga extending from Kanpur in west to Rajmahal, in Jharkhand state, in the east. They reported that the turbidity was maximum (1100-2170 ppm) in monsoon and minimum ( less than100 ppm) during January to June. The pH of the river water ranged between 7.45 (minimum) during June to August and 8.30 (maximum) during January to May. The dissolved oxygen, i.e. D.O. count ranged from 5.0 to 10.5 ppm with maximum values during January and February. While the minimum values were recorded in monsoon.
Bhargava (1982) in a survey of total length of the river Ganga found that quality index was far above the prescribed limit at Kanpur. He further found that the Ganga water was having unusually fast regenerating capacity by bringing down B.O.D. owing to the presence of large amount of well adopted micro-organisms. According to the research Ganga is rich in polymers excreted by various species of bacteria. These polymers being excellent coagulants remove turbidity by coagulation, setting the suspended particles at the sewage discharge point.
At the 1981 session of Indian Science Congress at Varanasi, scientists expressed concern at the growing pollution in the river Ganga in presence of the then Prime Minister Mrs. Indira Gandhi who inaugurated the session. At her instance, Dr. M.S. Swaminathan, the then member, Planning Commission asked the Central Board for Preventation and Control of Water Pollution, New Delhi to conduct studies on the state of the river Ganga. In collaboration with the State Pollution Control Boards of Uttar Pradesh, Bihar and Bengal and the centre for study of Man and Environment Kolkata (Calcutta), studies were conducted on the ‘Sources’ of pollution including all human activities, land use pattern and water quality of the river at selected sites during 1981-82 and report entitled “Basin, sub-basin inventory of water pollution in the Ganga basin part-II” was published in 1984. according to this report sewage of 27 class I cities and towns and effluents from 137 major industries were the main source of pollution of the river. In addition cremation of dead human bodies and dumping of carcasses aggrevated the pollution of the river.
It was Chandra (1981) who conducted studies on the pollution status of river Ganga at Allahabad, pointed out that industries manufacturing nitrogenous fertilizers have significant role in polluting the river water.
Study carried out in 1986-87 on physico-chemical properties of river Ganga water at Buxar (Unnao) clearly revealed that extent of pollution varied in different seasons. Usually all the 23 parameters studied showed high values in summer and lower during monsoons except turbidity which was high in rainy season. Values of BOD, COD, DO and H2S were recorded high than the tolerance limits.
Study on water quality of river Ganga at Kalakankar (Pratapgarh in Uttar Pradesh) revealed that even at such a remote and undisturbed place like Kalakankar the river water was not safe for drinking and bathing. It was also noted that the river showed an alkaline trend throughout the course of study.
According to the research done by Mehrotra (1990), the various sources responsible for pollution of the river in Varanasi city are domestic sewage effluents of the industries, burning of dead bodies at the ghats, use of detergents, insecticides and pesticides used in agriculture. Study revealed the presence of toxic metals like mercury ( 65 to 520ppb), Lead( less than 10 to 800 ppm), chromium (less than 10 to 200 ppm) and nickel (less than 10 to 130 ppm) in the sediments of Ganga river at Varanasi city.
Upstream from Varanasi, one of the major pilgrimage sites along the river, the water is comparatively pure, having a low Biochemical oxygen demand and fecal coliform count. Studies conducted in 1983 on water samples taken from the right bank of the Ganga at Patna confirm that escheria coli (E.Coli.), fecal streptococci and vibrio cholerae organisms die two to three times faster in the Ganga than in water taken from the rivers Son and Gandak and from dug wells and tube wells in the same area.
The chemical pollution of the river Ganga in Patna city in Bihar state has been found somewhat alarming beside the storm drain, especially in the regions like Rajapur, Mandiri and Krishnaghat.
According to the report published in a book by Mr. U.K. Sinha (1986), the concentration of iron is higher in sediments collected from 10 metres along the bank at Mandiri region. The concentration of all the toxic metals i.e copper, zinc, nickel and cobalt are higher in all the sediments collected from near the storm drain and diminishes towards mid-region of the river. The concentration of zinc is highest in the sediments collected from near the Mandiri storm drain, Antaghat storm drain and Krishnaghat storm drain.
The concentration of copper is highest in the sediments collected from near the Krishnaghat storm drain suggesting the presence copper due to utensil work being done in Thatheri Bazar and hospital wastes also, said report.
Present situation:
For some time now, this romantic view of the Ganges has collided with India's grim realities. During the past three decades, the country's explosive growth (at nearly 1.2 billion people, India's population is second only to China's), industrialization and rapid urbanization have put unyielding pressure on the sacred stream.

Ganga, the most sacred of rivers for Hindus, has become polluted for some years now. But a recent study by Uttarakhand Environment Conservation and Pollution Control Board says that the level of pollution in the holy river has reached alarming proportions.

Things have come to such a pass that the Ganga water is at present not fit just for drinking and bathing but has become unusable even for agricultural purposes.
As per the UECPCB study, while the level of coliform present in water should be below 50 for drinking purposes, less than 500 for bathing and below 5000 for agricultural use—the present level of coliform in Ganga at Haridwar has reached 5500.

Based on the level of coliform, dissolved oxygen and biochemical oxygen, the study put the water in A, B, C and D categories. While A category is considered fit for drinking, B for bathing, C for agriculture and D is for excessive pollution level.

Since the Ganga waters at Haridwar have more than 5000 coliform and even the level of dissolved oxygen and biochemical oxygen doesn't conform the prescribed standards, it has been put in the D category.

According to the study, the main cause of high level of coliform in Ganga is due to disposal of human faeces, urine and sewage directly into the river from its starting point in Gaumukh till it reaches Haridwar via Rishikesh.

Nearly 89 million litres of sewage is daily disposed into Ganga from the 12 municipal towns that fall along its route till Haridwar. The amount of sewage disposed into the river increases during the Char Dham Yatra season when nearly 15 lakh pilgrims visit the state between May and October each year.

Apart from sewage disposal of half-burnt human bodies at Haridwar and hazardous medical waste from the base hospital at Srinagar due to absence of an incinerator are also adding to pollution levels in the Ganga.

The result has been the gradual killing of one of India's most treasured resources. One stretch of the Yamuna River, the Ganges' main tributary, has been devoid of all aquatic creatures for at least a decade.

In Varanasi, India's most sacred city, the coliform bacterial count is at least 3,000 times higher than the standard established as safe by the United Nations world Health Organization. Coliform are rod-shaped bacteria that are normally found in the colons of humans and animals and become a serious contaminant when found in the food or water supply.

A study by Environmental Biology Laboratory, Department pf Zoology, Patna University, showed the presence of mercury in the Ganga river in Varanasi city. According to the study, annual mean concentration of mercury in the river water was 0.00023 ppm. The concentration ranged from NT (not traceable) to 0.00191 ppm.
Study done by Indian Toxicological Research Centre (ITRC), Lucknow during 1986-1992 showed maximum annual concentration of mercury in the Ganga river water at Rishikesh, Allahabad district and Dakshineswar as 0.081, 0.043 and 0.012 ppb respectively.

Ganga river at Varanasi was found well within the maximum permissible standard of 0.001 ppm prescribed for drinking water by the World Health Organization.
The mercury studied in the Ganga river could be traced in biotic as well as abiotic components of the river at the study site. The Hindu devotees take bath in the river where mercury was detected in 28%, 44%,75%, 96%, 42% and 89% of the river water, sediment, benthic fauna, fish, soil and vegetation samples respectively.

Though mercury contamination of the river water has not reached an alarming extent, its presence in the river system is worrisome. In the study annual mean concentration of the metal in the sediments was 0.067 ppm. Sediments constitute a major pool of mercury in fresh water.

As Ganga enters the Varanasi city, Hinduism’s sacred river contains 60,000 faecal coliform bacteria per 100 millilitres, 120 times more than is considered safe for bathing. Four miles downstream, with inputs from 24 gushing sewers and 60,000 pilgrim-bathers, the concentration is 3,000 times over the safety limit. In places, the Ganges becomes black and septic. Corpses, of semi-cremated adults or enshrouded babies, drift slowly by.

The tannery industry mushrooming in North India has converted the Ganga River into a dumping ground. The tanning industry discharges different types of waste into the environment, primarily in the form of liquid effluents containing organic matters, chromium, sulphide ammonium and other salts. As per an estimate, about 80-90% of the tanneries use chromium as a tanning agent. Of this, the hides take up only 50-70%, while the rest is discharged as effluent. Pollution becomes acute when tanneries are concentrated in clusters in small area like Kanpur. Consequently, the Leather-tanning sector is included in the Red category of industries due to the potential adverse environmental impact caused by tannery wastes.

Highly polluted sediments are adversely affecting the ecological functioning of rivers due to heavy metal mobilization from urban areas into biosphere. Distribution of heavy metals in sediments of the river Ganga and its tributaries have been carried out by several workers. Monitoring of Ganga River from Rishikesh to Varanasi indicated that Kannauj to Kanpur and Varanasi are the most polluted stretches of the river Ganga . Analysis of upstream and down stream water and sediment revealed a 10-fold increase in chromium level.

Reference:

Agarwal, D.K., Gaur, S.D., Tiwari T.C., Narayanswami, N. and Marwah, S.M. 1976.. Physico-chemical characteristics of Ganges water at Varanasi. India J. Environ. Hlth. 18 (3). 210-206.

Bhargava, D.S.1982. Purification power of the Ganges unmatched. L.S.T. Bull. 34. 52.

Chakraborty, R.N., Saxena, K.L. and Khan, A.Q. 1965. Stream pollution and its effect on water supply. A report of survey, Proc. Symp. Problems in Water treatment. Oct. 29-30, Nagpur. 211-219.

Chandra, K. 1981. Pollution from wastes of industries manufacturing nitrogenous fertilizer. A case study from river Ganga near Allahabad. In Proc. Symp. W.R.C.P.A. Roorkee 11-23 Dec. 141-151

Lakshminarayana, J.S.S. 1965. studies of the phytoplankton of the river Ganges, Varanasi, India, Part-I, Physico chemical characteristics of River Ganga. Hydrobiologia. 25. 119-175.

Mehrotra, M.N. 1990. the role of sediments in environmental pollution: A case study of the Ganga at Varanasi. Jour. of the Ind. Association of Sedimentologists, v.9.1-14.

Pahwa, D.V. and Mehrotra, S.N., 1966. Observations on fluctuation in the abundance of plankton in relation to certain hydrobiological vonditions of river Ganges. Proc. Nat. Acad. Sci., India, Sec. 36B (2). 157-89.

Saxena, K.L., Chakraborty, A.K., Khan, A.Q., Chattopadhayay, R.N. and Chandra, H. 1966. Pollution study of river near Kanpur. Indian, J. environ. Hlth. 8. 270.

Sinha,A.K., Singh, V.P. and Srivastava, K.,2000.Physico-chemical studies on river Ganga and its tributaries in Uttar Pradesh- the present status.In Pollution and Biomonitoring of Indian Rivers. (ed.) Dr. R.K. Trivedy. ABD Publishers, Jaipur. 1-29.

Sinha, U.K.,1986. Ganga pollution and health hazard. Inter-India Publication, New Delhi.

http://www.cse.iitk.ac.in/~amit/other/ganges.html
http://www.hindustantimes.com/storypage/storypage.
http://www.shvoong.com/exact-sciences/physics/1637757-holistic-study-mercury-pollution-ganga/
http://www.wordfocus.com/word-ganges.html
http://www.accessmylibrary.com/coms2/summary_0286-35048088_ITM
http://edugreen.teri.res.in/explore/water/river.htm