Hickson Compact Group 31 is one of 100 compact galaxy groups catalogued by Canadian astronomer Paul Hickson. Credit: NASA, ESA, S. Gallagher (University of Western Ontario), and J. English (University of Manitoba). Photo No. STScI-PRC10-08a
Imagine finding a living dinosaur in your backyard. Astronomers have found the astronomical equivalent of prehistoric life in our intergalactic back yard: a group of small, ancient galaxies that has waited 10 billion years to come together. These "late bloomers" are on their way to building a large elliptical galaxy. Such encounters between dwarf galaxies are normally seen billions of light-years away and therefore occurred billions of years ago. But these galaxies, members of Hickson Compact Group 31, are relatively nearby, only 166 million light-years away.New images of these galaxies by NASA's Hubble Space Telescope offer a window into what commonly happened in the universe's formative years when large galaxies were created from smaller building blocks. The Hubble observations have added important clues to the story of this interacting foursome, allowing astronomers to determine when the encounter began and to predict a future merger.Astronomers know the system has been around for a while because the oldest stars in a few of its ancient globular clusters are about 10 billion years old. The encounter, though, has been going on for about a few hundred million years, the blink of an eye in cosmic history. Everywhere the astronomers looked in this compact group they found batches of infant star clusters and regions brimming with star birth. Hubble reveals that the brightest clusters, hefty groups each holding at least 100,000 stars, are less than 10 million years old.The entire system is rich in hydrogen gas, the stuff of which stars are made. Astronomers used Hubble's Advanced Camera for Surveys to resolve the youngest and brightest of those clusters, which allowed them to calculate the clusters' ages, trace the star-formation history, and determine that the galaxies are undergoing the final stages of galaxy assembly.The composite image of Hickson Compact Group 31 shows the four galaxies mixing it up. The bright, distorted object at middle, left, is actually two colliding dwarf galaxies. The bluish star clusters have formed in the streamers of debris pulled from the galaxies and at the site of their head-on collision. The cigar-shaped object above the galaxy duo is another member of the group. A bridge of star clusters connects the trio. A longer rope of bright star clusters points to the fourth member of the group, at lower right. The bright object in the center is a foreground star. The image was composed from observations made by the Hubble Space Telescope's Advanced Camera for Surveys, NASA's Spitzer Space Telescope, and the Galaxy Evolution Explorer (GALEX). The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. The institute is operated for NASA by the Association of Universities for Research in Astronomy, Inc. in Washington, D.C.
Imagine finding a living dinosaur in your backyard. Astronomers have found the astronomical equivalent of prehistoric life in our intergalactic back yard: a group of small, ancient galaxies that has waited 10 billion years to come together. These "late bloomers" are on their way to building a large elliptical galaxy. Such encounters between dwarf galaxies are normally seen billions of light-years away and therefore occurred billions of years ago. But these galaxies, members of Hickson Compact Group 31, are relatively nearby, only 166 million light-years away.New images of these galaxies by NASA's Hubble Space Telescope offer a window into what commonly happened in the universe's formative years when large galaxies were created from smaller building blocks. The Hubble observations have added important clues to the story of this interacting foursome, allowing astronomers to determine when the encounter began and to predict a future merger.Astronomers know the system has been around for a while because the oldest stars in a few of its ancient globular clusters are about 10 billion years old. The encounter, though, has been going on for about a few hundred million years, the blink of an eye in cosmic history. Everywhere the astronomers looked in this compact group they found batches of infant star clusters and regions brimming with star birth. Hubble reveals that the brightest clusters, hefty groups each holding at least 100,000 stars, are less than 10 million years old.The entire system is rich in hydrogen gas, the stuff of which stars are made. Astronomers used Hubble's Advanced Camera for Surveys to resolve the youngest and brightest of those clusters, which allowed them to calculate the clusters' ages, trace the star-formation history, and determine that the galaxies are undergoing the final stages of galaxy assembly.The composite image of Hickson Compact Group 31 shows the four galaxies mixing it up. The bright, distorted object at middle, left, is actually two colliding dwarf galaxies. The bluish star clusters have formed in the streamers of debris pulled from the galaxies and at the site of their head-on collision. The cigar-shaped object above the galaxy duo is another member of the group. A bridge of star clusters connects the trio. A longer rope of bright star clusters points to the fourth member of the group, at lower right. The bright object in the center is a foreground star. The image was composed from observations made by the Hubble Space Telescope's Advanced Camera for Surveys, NASA's Spitzer Space Telescope, and the Galaxy Evolution Explorer (GALEX). The Hubble Space Telescope is a project of international cooperation between NASA and the European Space Agency. NASA's Goddard Space Flight Center manages the telescope. The Space Telescope Science Institute conducts Hubble science operations. The institute is operated for NASA by the Association of Universities for Research in Astronomy, Inc. in Washington, D.C.
No comments:
Post a Comment